
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NNETSCAPE NAVIGATOR: COMPLEX DEMONSTRATIONS
FOR WEB AGENTS WITHOUT A DEMONSTRATOR

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce NNetscape Navigator (NNetnav), a method for training web agents
entirely through synthetic demonstrations. These demonstrations are collected
by first interacting with a browser to generate trajectory rollouts, which are then
retroactively labeled into instructions using a language model. Most work on
training browser agents has relied on expensive human supervision, and the limited
previous work on such interaction-first synthetic data techniques has failed to
provide effective search through the exponential space of exploration. In contrast,
NNetnav exploits the hierarchical structure of language instructions to make this
search more tractable: complex instructions are typically decomposable into sim-
pler subtasks, allowing NNetnav to automatically prune interaction episodes when
an intermediate trajectory cannot be annotated with a meaningful sub-task. We use
NNetnav demonstrations from a language model for supervised fine-tuning of a
smaller language model policy, and find improvements of 6 points on WebArena
and over 20 points on MiniWoB++, two popular environments for web-agents.
Notably, on WebArena, we observe that language model policies can be further
enhanced when fine-tuned with NNetnav demonstrations derived from the same
language model. Finally, we collect and release a dataset of over 6k NNetnav
demonstrations on WebArena, spanning a diverse and complex set of instructions.

1 INTRODUCTION

Building grounded language agents that map human language instructions to a sequence of executable
actions is a long-standing goal of artificial intelligence (Winograd, 1972), with the ultimate goal of
automating mundane web tasks like flight booking. A promising new approach for building such
agents is to use large language models to control policies in digital environments like browsers (Yao
et al., 2022; Shinn et al., 2023; Murty et al., 2024; Wang et al., 2024, among others).

Unfortunately, such grounded instruction following without any training examples is challenging
because LMs do not know about the myriad and ever changing interaction possibilities of different
websites. For instance, for a new online shopping website, a zero-shot LM agent may not know how
to make a return or change order details, without expensive test-time exploration. Even simple tasks
like selecting a flight might involve typing in airport codes or selecting from a drop-down menu, and
zero-shot agents cannot know this a-priori.

One way to provide LM web-agents with knowledge about new web interfaces is via expert demon-
strations, that can either be used for in-context learning (Yao et al., 2022) or supervised fine-tuning
(Lai et al., 2024). These demonstrations are either fully provided by human experts (Sodhi et al., 2023;
Yao et al., 2022) or consist of human-generated trajectories paired with model-generated instructions
(Lai et al., 2024). Of course, collecting human demonstrations that cover each possible use case for
every web-site is an unattractively large, never-ending task. Thus, recent work uses entirely synthetic
demonstrations by sampling a synthetic instruction, and then mapping it into a trajectory using a base
LLM agent (Patel et al., 2024; Murty et al., 2024).

Such instruction-first methods for data collection face several challenges. First, synthetic instructions
in these demonstrations are sampled from an ungrounded LM prior that generates only plausible1

1We use the term plausible for instructions that match a website’s genre or intended use. For example,
searching for clothes on a retail site or checking notifications on a social media platform. Not all plausible
instructions are feasible.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Search for collectible items, check their details and write a review.

Find the post about Jaime Rogozinski, and his lawsuit
against Reddit, and ask him about his experience.

Subscribe to the r/wallstreetbets forum and navigate to world news

Exploration
Policy

Trajectory
Labeler

Proxy Reward
Function

Find driving directions from CMU to downtown Pittsburgh

Search for collectible items and navigate to ceramic rabbit ornaments

Figure 1: NNetnav produces synthetic demonstrations for training web-agents by exploring a website
to create trajectories, and then labeling them into instructions. Long exploration in NNetnav is made
efficient using a pruning heuristic inspired by the hierarchical structure of complex instructions. At
fixed intervals during exploration, the labeling function infers an instruction for the trajectory so far,
and if the resulting (instruction, trajectory) pair receives a low score from a reward function, the
episode is terminated (red cross). Components in NNetnav are implemented using prompts to the
same LM.

instructions without ensuring feasibility; e.g., an instruction such as Respond to the first post on
r/callofdutyfans for reddit is plausible, but not always feasible. Second, generated instructions are
limited to those that reference visible features of the website; e.g., given the landing page of a
github-like platform, no LM prior can generate instructions like Find information about Eric Bailey’s
contributions to the byteblaze project, which requires knowing about deeply embedded website-
specific entities like Eric Bailey. Finally, these methods provide no control over the complexity of
instructions, and rely entirely on the LM or bespoke prompts to generate complex instructions.

Instead of starting with a sampled instruction, we start by sampling an interaction first, and then
retroactively labeling it into an instruction that is feasible by design. At a high-level, our approach
NNetscape Navigator (NNetnav, Fig 1), uses a language model exploration policy to perform
extended interactions with an environment, and another language model trajectory labeler to annotate
trajectories with instructions2. To effectively control the exponential space of meaningful interactions,
NNetnav uses the hierarchical structure of language instructions as a pruning heuristic: for exploration
to discover a meaningfully complex task, trajectory prefixes must correspond to meaningful sub-tasks.
Thus, during an exploration episode, if a language model cannot label trajectory prefixes (at set
time-steps) with a sub-task, further exploration is automatically terminated. Imposing such a structure
over search not only enhances efficiency, but also results in complex and hierarchical instructions (See
Table 7 for examples). NNetnav prompts the same base language model for exploration, relabeling
and inferring sub-tasks, and effectively addresses all limitations of instruction-first data collection.

2We will open-source our code upon acceptance.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Using GPT-4o-mini (Achiam et al., 2023) as our base language model, we use demonstrations
collected via NNetnav to fine-tune a smaller Llama-3-8B-Instruct (Dubey et al., 2024) based
agent on two benchmarks for web navigation, MiniWoB++ (Shi et al., 2017; Liu et al., 2018) and
WebArena (Zhou et al., 2023). Compared to the base agent, performance of the fine-tuned agent
improves from 28% to 48% on MiniWoB++, and from 1% to 7% on WebArena. Crucially, these
improvements are higher than those from a model that’s fine-tuned with an instruction-first data
collection method. Finally, we find that NNetnav can be used for self-training—fine-tuning a small
LM agent with NNetnav demonstrations from the same LM leads to an improvement of 4% points
absolute (1% to 5%) on WebArena. Further analysis reveals the benefits of retroactive labeling
beyond performance improvements: When using a model-based evaluator, similar to Pan et al. (2024),
hindsight trajectories from NNetnav have a higher mean reward than trajectories from an LLM agent
based on the same underlying language model. Finally, we collect and release NNetnav-6k, a dataset
of over 6k demonstrations covering a wide and complex range of use cases on WebArena.

2 BACKGROUND

Following instructions on web-browsers is a deterministic sequential decision making problem.
Given an instruction g, an instruction following agent interacts with the browser by issuing a
sequence of actions ⟨a1, a2, . . . , aT ⟩ where each ai ∈ A is drawn in response to an observation oi.
Executing an action causes a state transition based on some unknown but deterministic environment
dynamics, leading to a new observation oi+1. The entire episode can be summarized as a trajectory
τ := ⟨o1, a1, o2, a2, . . . oT , aT , oT+1⟩. We formalize the instruction following agent as a mapping
π(at | τ<t; g) where τ<t := ⟨o1, a1, . . . ot⟩ is the trajectory so far. In this framework, the action
space A consists of a finite set of strings, while observations are represented as either flattened DOM
trees or website accessibility trees.

LLMs as Instruction Following Agents. Recent work explores prompted large language models
(LLMs) to directly parameterize π. These methods typically work in settings with textual observations
and action spaces, and many output a reasoning string ri before predicting the action string ai.
Concretely, we formalize an LM agent (omitting prompts) as πLM(at | τ<t; g) := pLM(at, | τ<t, rt; g)
where rt ∼ pLM(r | τ<t; g) is a reasoning step drawn as a sample from the LM.

Given expert demonstrations {gi, τ i} where τ i := ⟨oi1, ri1, ai1, oi2, ri2, ai2 . . . oiT ⟩, prior work adapts
LM agents using demonstrations either as in-context examples (Yao et al., 2022; Shinn et al., 2023;
Sun et al., 2023; Kim et al., 2023, among others) or as training data for supervised fine-tuning (Furuta
et al., 2023; Lai et al., 2024; Lù et al., 2024; Patel et al., 2024). For supervised fine-tuning of πLM on
a dataset of demonstrations, we construct training instances {(gi, τ i<t), (r

i
t, a

i
t)} where rit, a

i
t serves

as the target reasoning step and action for an intermediate context (gi, τ i<t).

Data collection with instruction-first methods. Collecting human demonstrations for training web-
agents is time consuming and costly. Thus, recent work proposes methods for generating synthetic
data for web-agents using language model components (Lai et al., 2024; Furuta et al., 2023; Murty
et al., 2024). These methods start by sampling synthetic instructions from an instruction generator (a
prompted LM that takes the website landing page and a persona as input), and then use a zero-shot
LM policy to convert these instructions into trajectories. Resulting demonstrations are filtered using
either the ground truth reward function (Furuta et al., 2023), or using another language model based
reward function (Lai et al., 2024; Murty et al., 2024). Most of these methods use bigger and better
language models for collecting demonstrations, and then use this data to adapt smaller models.

3 OUR APPROACH

NNetnav (Fig 1) is an interaction-first method for constructing demonstrations: An exploration policy
interacts with a browser in a structured manner to sample long trajectories which are retroactively
labeled into instructions (§3.2). We then post-process each trajectory to add post-hoc reasoning steps
corresponding to the generated instructions, and then use this data for supervised fine-tuning (§3.3).
We provide detailed pseudo-code for the exploration and relabeling steps in NNetnav in Algorithm 1.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1: Exploration and Relabeling in NNetnav within a single interaction episode
Input: πexplore,LfLM, sLM,∆LM
Function run_retroactive_labeler(τ):

δτ ← [∆LM(ot, at, ot+1) | (ot, at, ot+1) ∈ τ];
gcurr ← LfLM(δτ);
rcurr ← sLM(icurr, δτ);
return gcurr, rcurr;

Function explore(W, Tprune):
o1 ←W.init-observation;
t← 1;
τ ← ⟨⟩;
demonstrations← [];
while t ≤ Tmax do

if t ∈ Tprune then
gcurr, rcurr ← run_retroactive_labeler(τ);
if rcurr < 1 then

break;
else

demonstrations.add((gcurr, rcurr));

at ← πexplore(ot);
ot+1 ←W.step(at);
τ.add((ot, at, ot+1));
t← t+ 1;

return demonstrations;

3.1 LM COMPONENTS

We start by describing various components in NNetnav. All of these components are implemented
by zero-shot prompting a language model, with different prompts (see Appendix A for details).

Exploration Policy. To interact with the environment, we use an exploration policy πexplore, im-
plemented using a chain-of-thought prompted language model (Wei et al., 2022). Additionally, to
simulate a diverse set of behaviors from users and improve the diversity of resulting trajectories,
we seed each episode with a string description of a plausible user persona for the given website
(Shanahan et al., 2023; Argyle et al., 2023).

Summarizing Trajectory changes. Actions issued by πexplore result in a new observation in the
environment. We summarize this change as a short string description via another module ∆LM,
implemented using a language model. In particular, for any state ot, action at and the resulting
next state ot+1, δt = ∆LM(ot, at, ot+1) produces a string-valued description of the changes in the
observation as a result of the action. For a trajectory τ , we denote the sequence of state changes as δτ

Trajectory Labeling Function. Given state changes δτ , a labeling function LfLM produces a plausi-
ble instruction ĝ = LfLM(δτ) that the agent could have followed to produce the given interaction.

Reward Function. Given ĝ and δτ , the reward function module assigns a reward sLM(ĝ, δτ) ∈ {0, 1},
based on how well the state changes correspond to the given instruction ĝ.

3.2 SAMPLING DEMONSTRATIONS VIA INTERACTIONS

Let tmax be the maximum episode length for each exploration rollout. At specific time-steps
{t1, t2, . . . tmax}, we run the pruning heuristic that attempts to annotate the trajectory so-far with
a sub-task annotation. If this is successful, we continue the episode, and otherwise halt to sample
another rollout. Concretely, suppose we have a partial trajectory τ<t after interacting with the environ-
ment for t time-steps. If t ∈ {t1, t2, . . . tmax}, we first obtain a retroactive sub-task ĝ = LfLM(δτ<t

).
We halt further exploration if sLM(ĝ, δτ<t) = 0. Otherwise, we add the generated (ĝ, τ<t) to our set

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

of synthetic demonstrations, and continue exploring. Typically, each interaction episode results in
multiple demonstrations.

3.3 GENERATING POST-HOC REASONING STEPS

The exploration policy in this work is implemented using a language model that generates a reasoning
step, before choosing an action (§2). Since actions in our demonstration set are a result of exploration,
corresponding reasoning steps are not generally related to the retroactively generated instruction.
Thus, for each demonstration in our synthetic demonstration set, we post-hoc annotate every action
with a new reasoning step that directly corresponds to the generated instruction. Concretely, given
every (ĝ, oi, ai) tuple in our synthetic demonstration set, we prompt a language model to output a
suitable reasoning step for choosing action ai given the instruction ĝ and current observation oi. We
note that such a post-hoc reasoning procedure is similar to Yang et al. (2024).

4 EXPERIMENTAL SETUP

4.1 DATASETS

We fine-tune language model policies with NNetnav demonstrations on two web navigation environ-
ments, MiniWoB++ (Shi et al., 2017; Liu et al., 2018) and WebArena (Zhou et al., 2023).

1. MiniWoB++: A dataset of diverse synthetic web-interfaces with a shared action space.
Tasks on MiniWoB++ range from clicking on buttons to complex tasks like making a
booking on a website. We use a subset of 8 complex tasks from MiniWoB++ as a toy
benchmark to evaluate our method. We use the bid-based action space from BrowserGym
(Drouin et al., 2024), consisting of 12 actions, and a DOM based observation space. Due to
its synthetic nature, MiniWoB++ comes with an automatic reward function. We report the
mean reward over 20 random seeds for each task, similar to (Drouin et al., 2024).

2. WebArena: A dataset of realistic web navigation tasks over 5 websites covering domains
such as e-commerce, discussion forums, maps and software development. We use the default
action space from WebArena (typing, clicking, hovering, tab management) and the default
accessibility tree based observation space. WebArena consists of 812 Web navigation tasks
across these websites, and provides an evaluator that measures success rate (SR) in terms of
functional correctness. We report the average SR across these tasks.

4.2 MODEL SETTINGS

All inference evaluations are conducted using the same base language model, with data collection
typically performed using a larger language model unless stated otherwise. We evaluate under the
following settings:

1. Zero-Shot: A baseline zero-shot LM policy πLM, prompted using chain-of-thought prompt-
ing (Wei et al., 2022). Next, we consider various fine-tuned models.

2. SFT (Instruction-First): Supervised fine-tuning (SFT) of the base policy using data
collected via instruction-first sampling. Here, we use the same reward model for filtering
demonstrations as NNetnav, and also sample the same number of demonstrations for fair
comparison.

3. SFT (NNetnav): Supervised fine-tuning of πLM with demonstrations collected via NNetnav.

4. SFT (NNetnav + Distil.): Ablation, where we only retain instructions found via NNetnav
and re-generate trajectories by prompting the same large LM as an agent. We use this setting
to isolate performance improvements attributable to NNetnav trajectories.

4.3 IMPLEMENTATION DETAILS

All LM components for data collection in NNetnav as well as instruction-first methods are based
on GPT-4o-mini (specifically gpt-4o-mini-2024-07-18). We use Llama-3-8B-Instruct
as the inference policy πLM. For Instruction-first data collection, we sample 50 instructions per

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Domain Zero-Shot SFT (Instruction-First) SFT (NNetnav) SFT (NNetnav + Distil.)

MiniWoB++
book-flight 0.0 0.0 0.0 0.0
choose-date 0.0 0.0 0.0 0.0
click-checkboxes-soft 0.4 0.25 0.65 0.5
email-inbox 0.25 0.3 0.3 0.35
login-user 0.3 0.0 1.0 0.95
navigate-tree 1.0 0.95 1.0 0.95
phone-book 0.15 0.15 0.2 0.55
use-autocomplete 0.25 0.55 0.7 0.35

Avg. 0.28 0.28 0.48 0.36

WebArena
Shopping 3.8 7.7 7.4 7.4
CMS 0 4.2 4.2 4.2
Reddit 0 0 0 0
Gitlab 0 0 0 4.5
Maps 0 9.1 28.5 15.4

Avg. 1.0 4.2 7.2 6.0

Table 1: Results for MiniWoB++ and WebArena, broken down by domain, reporting mean reward for
MiniWoB++ and task success rate (SR) for WebArena. We compare the zero-shot agent with agents
fine-tuned with NNetnav and instruction-first demonstrations. Overall, fine-tuning with NNetnav
leads to the largest improvements: from 28% to 48% on MiniWoB++; from 1% to 7.2% on WebArena.

website for WebArena, and 80 instructions per interface in MiniWoB++, and prompt the instruction
generator with the landing page as well as a persona (to improve diversity). For NNetnav, we use our
exploration policy to generate 50 episodes per website for WebArena, and 80 episodes per interface
for MiniWoB++. We set Tmax to 40 for WebArena, and 20 for MiniWoB++. For both MiniWoB++
and WebArena, we apply the pruning function every 4 time-steps. We use 16 persona types per
website for WebArena, and 10 persona types per web-interface for MiniWoB++.

We use the BrowserGym framework (Drouin et al., 2024) for experiments with MiniWoB++ and
prune out the full DOM to only keep visible elements. During inference, we set the max episode
length for πLM as 30 for WebArena (following Zhou et al. (2023)), and 20 for MiniWoB++. We-
bArena requires agents to output a special stop action for outputting answers. We post-process
NNetnav demonstrations to add a stop action at the end of the trajectory using a prompted LM (See
Appendix A.2 for details).

Fine-tuning details. We fine-tune all models for 5 epochs, truncating the max sequence length to
4096, with a learning rate of 2e-5, using 4 A100 GPUs. We provide complete details of our training
setup in Appendix D. We use open-instruct (Wang et al., 2023) for fine-tuning all language models,
and set up local inference servers using vllm (Kwon et al., 2023).

5 MAIN RESULTS

Fine-tuning agents with NNetnav leads to consistent gains. We report results from all model
settings in Table 1. We find that fine-tuning the zero-shot policy πLM with synthetic demonstrations
from NNetnav leads to consistent improvements on all tasks in MiniWoB++, leading to a 20 point
improvement overall. We note an improvement of over 6 points from fine-tuning with NNetnav
demonstrations on WebArena. Importantly, gains from fine-tuning with NNetnav exceeds those from
using instruction-first methods by 12 points on MiniWoB++ and 1.2 points on WebArena.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Domain Zero-Shot SFT (Instruction-First) SFT (NNetnav) SFT (NNetnav + Distil.)

Shopping 1.26 1.37 2.22 2.33
CMS 1.21 1.29 1.92 1.87
Reddit 1.08 1.31 2.0 1.54
Gitlab 1.14 1.09 1.86 1.5
Maps 1.21 1.36 2.29 1.86

WebArena (Avg.) 1.19 1.28 2.05 1.87

Table 2: Model-based evaluation on WebArena, broken down by domain. For each test instruction
and predicted trajectory, we prompt a GPT-4o based reward model to output a graded reward from 1
to 5 based on a manual rubric. We find that fine-tuning with NNetnav outperforms all other settings.

Domain Zero-Shot Self-Train (NNetnav)

Shopping 3.8 15.4
CMS 0.0 0.0
Reddit 0.0 0.0
Gitlab 0.0 0.0
Maps 0.0 7.1

Avg. 1.0 5.3

Table 3: We generate NNetnav demonstrations
using Llama-3-8B-Instruct, which we use for
supervised fine-tuning of an agent based on the
same LM, and find significant improvements on
WebArena from 1% to 5.3%.

Domain Zero-Shot Self-Train (NNetnav)

in-domain
Shopping 1.26 1.37
CMS 1.21 1.29
Maps 1.21 1.36

out-of-domain
Reddit 1.08 1.31
Gitlab 1.14 1.09

Table 4: We fine-tune πLM with NNetnav
demonstrations from 3 websites, and evaluate
in-domain and out-of-domain generalization
with the model based evaluator that outputs a
score from 1 to 5. While improvements are
higher in-domain, we still find improvements
on out-of-domain data.

Fine-grained evaluation on WebArena with LLM reward. We observe highly non-uniform
improvements on WebArena with no improvements on Reddit and Gitlab in particular. We hypothesize
that this is due to the coarse nature of WebArena’s success rate (SR) evaluation, since it does not
provide partial credit. Thus, inspired by Pan et al. (2024), we develop a model based evaluation
using the largest publicly available GPT-4o (specifically gpt-4o-2024-08-06) model to assign a
graded reward from 1 to 5 to model outputs for each test instruction (see Appendix B for full prompt).
We present results from model-based evaluation in Table 2. At the level of model settings we observe
the same trend: Zero-Shot < SFT (Instruction-First) < SFT (NNetnav + Distil.) < SFT (NNetnav).
However since this evaluation is more graded, we find consistent improvements from using NNetnav
demonstrations across all websites, including Reddit and Gitlab, where improvements of 0.92 points
and 0.72 points are observed, respectively. As expected, performance rankings sometimes changes
with such graded evaluation e.g. on CMS, all fine-tuned models are tied in terms of SR (Table 1), but
not in terms of graded reward (Table 2). Overall, we believe WebArena evaluations should incorporate
both overall SR and fine-grained model based evaluation for a more comprehensive understanding of
system performance.

The Benefit of Hindsight. We find that SFT (NNetnav) outperforms SFT (NNetnav + Distil.) on
both MiniWoB++ and WebArena. Trajectories in NNetnav are obtained via a hindsight procedure:
the model acts first, and the instruction is inferred afterward. In constrast, for NNetnav + Distil., the
instruction is provided first, and the trajectory is sampled later. To understand if hindsight trajectories
offer an advantange, we use the model based evaluator to measure training data quality for these
settings. Specifically, we use the evaluator to assign reward to trajectories in NNetnav and NNetnav
+ Distil. for WebArena, and find a win-rate of 64% for NNetnav trajectories with a mean reward
of 3.52 compared to a reward of 2.44 for NNetnav + Distil. We conclude that gains from NNetnav
extend beyond just providing more complex instructions.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

create
find

get

add

m
ake

search

update
compare

edit

browse

check
access

View
open
buy

project

pr
od

uc
t

is
su
e

order

product

information

issue

direction

direction

dis
tan
ce

inf
or
ma

tio
n

ro
ute product

ite
m

ke
y

cu
st
om

er

comment

contribution

inform
ation

issue
project

product
price

information

address
file
price

product
accessory

set

product

detail

information
file

product
subreddit

category
section

status
issue
order
datum

website
subreddit

Reddit
portal

detail
product

datum
information

page
website

tab
webpage

product
printer

brush
collectible

Figure 3: We plot the top 15 most common root
verbs (inner circle) with their most common di-
rect object nouns (outer circle) for instructions in
NNetnav-6k. We note a high degree of diversity in
intents ranging from searching for information to
updating addresses and navigating for directions.

4 16 208 12 24 32 3628
0

200

400

600

800

1000

1200

1400

1600

1800

Trajectory Length

#
D

em
on

st
ra

tio
ns

10 20 30 40 50 60 70
0

100

200

300

400

500

600

Instruction Length

#
D

em
on

st
ra

tio
ns

Figure 4: Length distribution of instruc-
tions and trajectories in NNetnav-6k.

Figure 2: Horizontal lines indicate
fraction of episodes terminating at
corresponding y-axis exploration
step. The red shaded area repre-
sents prevented actions, showing
significant savings on both datasets.

Computational savings from NNetnav pruning. We visual-
ize overall improvements in exploration efficiency in Fig 2.
Each horizontal line depicts the fraction of interaction episodes
that terminate at a specific time-step (indicated by the y-axis),
with the red shaded area depicting additional actions that were
prevented from early pruning. We find clear evidence of com-
putational savings. In particular, over 60% of all exploration
episodes were pruned after 16 actions for WebArena. For Mini-
WoB++, 65% of episodes were pruned after just 4 actions in
MiniWoB++, which we identify as interactions where these first
actions resulted in execution failures that our pruning heuristic
successfully identified.

Self-training with NNetnav. Can NNetnav demonstrations
from an LM be used for improving the same LM agent?
To answer this, we collect another set of NNetnav demon-
strations on WebArena, using LM components based on
Llama-3-8B-Instruct. Given the limitations of this smaller
model, we anticipate fewer meaningful interactions. To com-
pensate, we increase the number of episodes to 200 episodes per
website, resulting in 302 demonstrations which we use for fine-
tuning the same Llama-3-8B-Instruct agent. From results
in Table 3, we find improvements of 4.3 points on WebArena.

Cross-website generalization. Finally, we use NNetnav to
conduct a small study on cross-website generalization in web-
agents. Concretely, we perform supervised fine-tuning of πLM on NNetnav demonstrations from
Shopping, Maps and CMS, and evaluate generalization to Reddit and Gitlab. Here, we choose to
report only model-based evaluation since success rates are 0 for these domains. From results in
Table 4, we note that average reward improves by 0.06 on held out websites, and by 0.13 on in-domain
websites, suggesting some potential for cross-website transfer in LLM web-agents.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Agent #Params WebArena SR Open LLM? Zero-shot?

Llama-3-8B-Instruct 8B 1.0 ✓ ✓

Patel et al. (2024) 72B 9.4 ✓ ✗

Lai et al. (2024) 7B 2.5 ✓ ✓

Ou et al. (2024) 7B 6.3 ✓ ✓

Llama-3-8B-Instruct-NNetnav 8B 10.3 ✓ ✓

Drouin et al. (2024) Unknown (GPT-4) 23.5 ✗ ✓

Wang et al. (2024) Unknown (GPT-4) 35.5 ✗ ✗

Table 5: We present WebArena task success rate of various prior approaches, along with key details
such as model size, the use of open LLMs, and whether methods are fully zero-shot. For Lai et al.
(2024), we report results from the setting that does not use human supervision. Notably, our approach,
Llama-3-8B-Instruct-NNetnav, achieves a 4% improvement over the previous state-of-the-art
among zero-shot agents that use open LLMs.

6 NNetnav-6K

To facilitate further research on fine-tuned browser agents, we release the first large-scale dataset
of over 6000 demonstrations from WebArena. Here, we use Llama-3-70B-Instruct3 as the
underlying LM for various components in NNetnav, and sample 3000 interactions each, with Tmax
set to 40 as before. For each trajectory in these demonstrations, we release both accessibility tree
strings as well as browser screenshots at each time-step, to support future work on text-based as well
as multi-modal web agents.

To analyze diversity in these instructions, we follow methodology from Wang et al. (2022). Specifi-
cally, we use Stanza (Qi et al., 2020) to parse each instruction, identifying the verb closest to the root
and its direct object. Fig 3 presents the top 15 verbs and their corresponding object nouns. Overall, we
observe a diverse range of intents in the NNetnav-6k dataset. Additionally, we plot the distribution of
instruction as well as trajectory lengths in Fig 4, revealing further diversity in these aspects. Table 7
provides example demonstrations from NNetnav-6k, showcasing instructions from different websites.
We find a number of complex, hierarchical instructions such as Edit the issue “Link to WCAG 2.1
instead of ... that refer to specific features of the website (r/art, Swings and roundabouts), and are
plausible by design. Many of these instructions share lots of common structure (e.g. Get walking
directions from ... and Get cycling directions from ...), and incorporating such structure into agents
could be a promising direction for future work.

Fine-tuning agents with NNetnav-6k demonstrations. To demonstrate the effectiveness of
NNetnav-6k in improving instruction-following in LLM web-agents, we perform supervised finetun-
ing of the Llama-3-8B-Instruct agent on NNetnav-6k demonstrations. As described in Section
2, each demonstration expands into multiple training instances, resulting in a total of over 77,000
training examples. The results, presented in Table 5, show that our approach achieves a WebArena
Success Rate (SR) of 10.3%. This marks a significant improvement over previously reported results
for sub-10B models trained on synthetic datasets. To the best of our knowledge, our model sets a new
state-of-the-art among agents that do not use closed-source models like GPT-4, human-annotated
demonstrations, or prior knowledge of WebArena test instructions.

7 RELATED WORK

Language Conditioned Digital Assistants. Mapping instructions to action sequences in digital
environments has been a long-standing goal in natural language understanding (Allen et al., 2007;
Branavan et al., 2009). Most pre-LLM approaches for this rely on expert demonstrations for behavioral
cloning (Chen & Mooney, 2011; Humphreys et al., 2022), along with an appropriately shaped reward

3We opted to use a locally hosted Llama-3-70B-Instruct model for collecting the larger-scale NNetnav-6k
dataset, as it produced demonstrations of comparable quality to GPT-4o-mini while offering a more permissive
license for downstream applications.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

function (Branavan et al., 2009; Liu et al., 2018; Misra et al., 2017, among others). Here, learning is
driven purely by synthetic demonstrations derived via (language model) exploration of websites.

Linguistic Priors for Exploration. Several prior works have used natural language priors to inform
exploration for sequential decision making. Harrison et al. (2017) use a trained model of associations
between language and state/action pairs to guide exploration during policy learning. Mu et al.
(2022) use language annotations of states to train a goal generator module that provides intrinsic
rewards for achieving generated goals. Similarly, Du et al. (2023) constrain exploration towards goals
generated by a pre-trained LLM at each intermediate state of an agent. In constrast, NNetnav biases
exploration through two news ways of using language priors. First, we use natural language as a way
to filter meaningful interactions. Second, we use it as a pruning heuristic to navigate the potentially
exponential search space of these interactions.

Training Data for LLM Web-Agents. LLMs have shown strong performance over a wide range
of language understanding tasks, and are increasingly being used to interpret language in grounded
contexts such as browsers (Yao et al., 2022; Lai et al., 2024; Wang et al., 2024; Patel et al., 2024;
Lù et al., 2024, among others). Many of these approaches rely on human demonstrations, either
for in-context learning (Yao et al., 2022; Sodhi et al., 2023; Kim et al., 2023) or for finetuning (Lù
et al., 2024). However, because human demonstrations are costly, recent work trains LLM agents
through synthetic demonstrations generated using instruction-first methods (Lai et al., 2024; Patel
et al., 2024). One exception is Murty et al. (2024), which introduces an interaction-first method
for generating synthetic demonstrations for in-context learning. Despite its novelty, their approach
does not scale well to real websites due to the lack of a mechanism for effective exploration in
environments with many possible interactions. In contrast, NNetnav also follows an interaction-first
approach but improves efficiency by leveraging linguistically motivated pruning to navigate the space
of meaningful interactions.

8 CONCLUSION

We propose NNetnav, a method for training web-agents with synthetic demonstrations. NNetnav
flips the standard paradigm of synthetic data generation by first interacting with a website to generate
trajectories and then relabeling trajectories into instructions. Real websites have a prohibitively large
set of possible interactions; NNetnav searches over this space efficiently using a pruning function
inspired by the hierarchical structure of language instructions: any complex instruction consists of
language describable sub-tasks and so, if during an interaction a relabeling module cannot infer a
meaningful sub-task for the trajectory-so-far, further exploration is pruned. We apply NNetnav to
collect demonstrations on MiniWoB++ and WebArena, which are then used to fine-tune a zero-shot
base LM agent. This yields significant improvements over the zero-shot baseline and outperforms
standard synthetic data generation methods. In addition, we show that NNetnav enables self-training,
as demonstrations collected using a base language model can improve the performance of an agent
built on the same model. We find that NNetnav significantly enhances exploration efficiency due to
the pruning heuristic and generates complex, realistic instructions. Lastly, we release NNetnav-6k,
the largest dataset of demonstrations on WebArena to date, with over 6000 demonstrations covering
broad range of intents and phenomena in WebArena.

REPRODUCTIBILITY STATEMENT

Prompts for every LM component is provided in Appendix A, along with other details like agent
action spaces. Details for model-based evaluation on WebArena are provided in Appendix B. We
provide full details for post-processing demonstrations for SFT in Appendix C, and additional
hyperparameters for supervised fine-tuning in Appendix D. All code and data will be available here.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

10

https://github.com/MurtyShikhar/NNetnav.git

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

James Allen, Nathanael Chambers, George Ferguson, Lucian Galescu, Hyuckchul Jung, Mary Swift,
and William Taysom. Plow: a collaborative task learning agent. In Proceedings of the 22nd
National Conference on Artificial Intelligence - Volume 2, AAAI’07, pp. 1514–1519. AAAI Press,
2007. ISBN 9781577353232.

Lisa P Argyle, Ethan C Busby, Nancy Fulda, Joshua R Gubler, Christopher Rytting, and David
Wingate. Out of one, many: Using language models to simulate human samples. Political Analysis,
31(3):337–351, 2023.

S.R.K. Branavan, Harr Chen, Luke Zettlemoyer, and Regina Barzilay. Reinforcement learning
for mapping instructions to actions. In Keh-Yih Su, Jian Su, Janyce Wiebe, and Haizhou Li
(eds.), Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the
4th International Joint Conference on Natural Language Processing of the AFNLP, pp. 82–
90, Suntec, Singapore, August 2009. Association for Computational Linguistics. URL https:
//aclanthology.org/P09-1010.

David Chen and Raymond Mooney. Learning to interpret natural language navigation instructions
from observations. Proceedings of the AAAI Conference on Artificial Intelligence, 25(1):859–865,
Aug. 2011. doi: 10.1609/aaai.v25i1.7974. URL https://ojs.aaai.org/index.php/AAAI/
article/view/7974.

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H. Laradji, Manuel Del Verme, Tom
Marty, David Vazquez, Nicolas Chapados, and Alexandre Lacoste. WorkArena: How capable
are web agents at solving common knowledge work tasks? In Ruslan Salakhutdinov, Zico
Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
(eds.), Proceedings of the 41st International Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pp. 11642–11662. PMLR, 21–27 Jul 2024. URL
https://proceedings.mlr.press/v235/drouin24a.html.

Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter Abbeel, Abhishek
Gupta, and Jacob Andreas. Guiding pretraining in reinforcement learning with large language
models. arXiv preprint arXiv:2302.06692, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The Llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Hiroki Furuta, Ofir Nachum, Kuang-Huei Lee, Yutaka Matsuo, Shixiang Shane Gu, and Izzeddin
Gur. Multimodal web navigation with instruction-finetuned foundation models. arXiv preprint
arXiv:2305.11854, 2023.

Brent Harrison, Upol Ehsan, and Mark O Riedl. Guiding reinforcement learning exploration using
natural language. arXiv preprint arXiv:1707.08616, 2017.

Peter C Humphreys, David Raposo, Tobias Pohlen, Gregory Thornton, Rachita Chhaparia, Alistair
Muldal, Josh Abramson, Petko Georgiev, Adam Santoro, and Timothy Lillicrap. A data-driven
approach for learning to control computers. In International Conference on Machine Learning, pp.
9466–9482. PMLR, 2022.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language models can solve computer tasks.
arXiv preprint arXiv:2303.17491, 2023.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yuxuan Chen, Pengbo Shen, Hao Yu, Hanchen
Zhang, Xiaohan Zhang, Yuxiao Dong, and Jie Tang. Autowebglm: Bootstrap and reinforce a large
language model-based web navigating agent, 2024.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement
learning on web interfaces using workflow-guided exploration. In International Conference on
Learning Representations, 2018.

11

https://aclanthology.org/P09-1010
https://aclanthology.org/P09-1010
https://ojs.aaai.org/index.php/AAAI/article/view/7974
https://ojs.aaai.org/index.php/AAAI/article/view/7974
https://proceedings.mlr.press/v235/drouin24a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xing Han Lù, Zdeněk Kasner, and Siva Reddy. Weblinx: Real-world website navigation with
multi-turn dialogue. arXiv preprint arXiv:2402.05930, 2024.

Dipendra Misra, John Langford, and Yoav Artzi. Mapping instructions and visual observations to
actions with reinforcement learning. arXiv preprint arXiv:1704.08795, 2017.

Jesse Mu, Victor Zhong, Roberta Raileanu, Minqi Jiang, Noah Goodman, Tim Rocktäschel, and
Edward Grefenstette. Improving intrinsic exploration with language abstractions. Advances in
Neural Information Processing Systems, 35:33947–33960, 2022.

Shikhar Murty, Christopher D Manning, Peter Shaw, Mandar Joshi, and Kenton Lee. BAGEL:
Bootstrapping agents by guiding exploration with language. In Ruslan Salakhutdinov, Zico
Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
(eds.), Proceedings of the 41st International Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pp. 36894–36910. PMLR, 21–27 Jul 2024. URL
https://proceedings.mlr.press/v235/murty24a.html.

Tianyue Ou, Frank F Xu, Aman Madaan, Jiarui Liu, Robert Lo, Abishek Sridhar, Sudipta Sengupta,
Dan Roth, Graham Neubig, and Shuyan Zhou. Synatra: Turning indirect knowledge into direct
demonstrations for digital agents at scale. arXiv preprint arXiv:2409.15637, 2024.

Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou, Sergey Levine, and Alane Suhr. Autonomous
evaluation and refinement of digital agents. In First Conference on Language Modeling, 2024.
URL https://openreview.net/forum?id=NPAQ6FKSmK.

Ajay Patel, Markus Hofmarcher, Claudiu Leoveanu-Condrei, Marius-Constantin Dinu, Chris Callison-
Burch, and Sepp Hochreiter. Large language models can self-improve at web agent tasks. arXiv
preprint arXiv:2405.20309, 2024.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and Christopher D. Manning. Stanza: A Python
natural language processing toolkit for many human languages. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics: System Demonstrations, 2020. URL
https://nlp.stanford.edu/pubs/qi2020stanza.pdf.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–16. IEEE, 2020.

Murray Shanahan, Kyle McDonell, and Laria Reynolds. Role play with large language models.
Nature, 623(7987):493–498, 2023.

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of bits: An
open-domain platform for web-based agents. In International Conference on Machine Learning,
pp. 3135–3144. PMLR, 2017.

Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with dynamic
memory and self-reflection. arXiv preprint arXiv:2303.11366, 2023.

Paloma Sodhi, SRK Branavan, and Ryan McDonald. Heap: Hierarchical policies for web actions
using llms. arXiv preprint arXiv:2310.03720, 2023.

Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai, and Chao Zhang. Adaplanner: Adaptive
planning from feedback with language models. arXiv preprint arXiv:2305.16653, 2023.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
arXiv preprint arXiv:2212.10560, 2022.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Raghavi Chandu,
David Wadden, Kelsey MacMillan, Noah A. Smith, Iz Beltagy, and Hannaneh Hajishirzi. How far
can camels go? exploring the state of instruction tuning on open resources, 2023.

Zora Zhiruo Wang, Jiayuan Mao, Daniel Fried, and Graham Neubig. Agent workflow memory. arXiv
preprint arXiv:2409.07429, 2024.

12

https://proceedings.mlr.press/v235/murty24a.html
https://openreview.net/forum?id=NPAQ6FKSmK
https://nlp.stanford.edu/pubs/qi2020stanza.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models.
In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances
in Neural Information Processing Systems, volume 35, pp. 24824–24837. Curran Associates,
Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf.

Terry Winograd. Understanding natural language. Cognitive Psychology, 3(1):1–191, 1972.
ISSN 0010-0285. doi: https://doi.org/10.1016/0010-0285(72)90002-3. URL https://www.
sciencedirect.com/science/article/pii/0010028572900023.

Zonghan Yang, Peng Li, Ming Yan, Ji Zhang, Fei Huang, and Yang Liu. ReAct meets ActRe:
Autonomous annotation of agent trajectories for contrastive self-training. In First Conference on
Language Modeling, 2024. URL https://openreview.net/forum?id=0VLBwQGWpA.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan Cao.
ReAct: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2022.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Yonatan Bisk, Daniel Fried, Uri Alon, et al. Webarena: A realistic web environment for building
autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

A PROMPTS FOR LM COMPONENTS

A.1 MINIWOB++

We start by presenting all prompts for MiniWoB++. The action space for MiniWob++ is:

Listing 1: Action Space
noop(wait_ms: float = 1000)

Examples:
noop()
noop(500)

scroll(delta_x: float, delta_y: float)
Examples:

scroll(0, 200)
scroll(-50.2, -100.5)

fill(bid: str, value: str)
Examples:

fill(’237’, ’example value’)
fill(’45’, ’multi-line\nexample’)
fill(’a12’, ’example with "quotes"’)

select_option(bid: str, options: str | list[str])
Examples:

select_option(’a48’, ’blue’)
select_option(’c48’, [’red’, ’green’, ’blue’])

click(bid: str, button: Literal[’left’, ’middle’, ’right’] = ’left’, modifiers: list[typing
.Literal[’Alt’, ’Control’, ’Meta’, ’Shift’]] = [])

Examples:
click(’a51’)
click(’b22’, button=’right’)
click(’48’, button=’middle’, modifiers=[’Shift’])

dblclick(bid: str, button: Literal[’left’, ’middle’, ’right’] = ’left’, modifiers: list[
typing.Literal[’Alt’, ’Control’, ’Meta’, ’Shift’]] = [])

Examples:
dblclick(’12’)
dblclick(’ca42’, button=’right’)
dblclick(’178’, button=’middle’, modifiers=[’Shift’])

hover(bid: str)
Examples:

hover(’b8’)

13

https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://www.sciencedirect.com/science/article/pii/0010028572900023
https://www.sciencedirect.com/science/article/pii/0010028572900023
https://openreview.net/forum?id=0VLBwQGWpA

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

press(bid: str, key_comb: str)
Examples:

press(’88’, ’Backspace’)
press(’a26’, ’Control+a’)
press(’a61’, ’Meta+Shift+t’)

focus(bid: str)
Examples:

focus(’b455’)

clear(bid: str)
Examples:

clear(’996’)

drag_and_drop(from_bid: str, to_bid: str)
Examples:

drag_and_drop(’56’, ’498’)

upload_file(bid: str, file: str | list[str])
Examples:

upload_file(’572’, ’my_receipt.pdf’)
upload_file(’63’, [’/home/bob/Documents/image.jpg’, ’/home/bob/Documents/file.zip
’])

Only a single action can be provided at once. Example:
fill(’a12’, ’example with "quotes"’)

If you are done exploring, you can issue the stop action: ‘‘‘stop‘‘‘

Here is an example with chain of thought of a valid action when clicking on a button: "In
order to accomplish my goal I need to click on the button with bid 12. In summary, the next
action I will perform is ‘‘‘click("12")‘‘‘

This is then directly used for various prompts as {action_str}.

Listing 2: Prompt for the Exploration Policy πexplore

You are an autonomous intelligent agent tasked with performing tasks on a web interface.
Your objective is to simulate a task that a person might request, by interacting with the
interface through the use of specific actions.

Here’s the information you’ll have:
DOM Representation: This is the current webpage’s Document Object Model (DOM)
representation as a string.
The previous action: This is the action you just performed. It may be helpful to track your
progress.

Trajectory: This is a sequence of natural language descriptions of the agent’s interaction
with the web-browser.
Person Description: The description of a specific kind of person whose task you are
supposed to simulate.

You can perform the following actions: {action_str}

To be successful, it is very important to follow the following rules:
1. You should only issue an action that is valid given the current observation.
2. You should only issue one action at a time.
3. You should reason step by step and then issue the next action.
4. Make sure to wrap your action in a code block using triple backticks.
5. The DOM / Accessibility Tree only shows the visible part of the webpage. If you need to
interact with elements that are not visible, you can scroll to them using the scroll action
. Often submit buttons are not visible and are at the bottom of the page. To scroll to the
bottom of the page, use the scroll action with a large value for the y coordinate.
6. To generate an interesting task, make sure you issue atleast 4 actions before stopping.
More interesting tasks typically involve more interactions with the browser.
7. You can issue atmost 20 actions before stopping, but feel free to output the stop action
early if you want to stop exploring. Don’t generate anything after stop.

Listing 3: Prompt for ∆LM

You are given the output of an action taken by an autonomous intelligent agent navigating a
web-interface to fulfill a task given by a user. Your objective is to produce a

description of the changes made to the state of the browser.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Here’s the information you’ll have:
Initial state of the browser as a DOM representation: This is the webpage’s Document Object
Model (DOM) representation as a string.

Final state of the browser as a DOM representation: This is the DOM representation after
the agent took the action.

The action taken by the agent: This is the action taken by the agent to change the state of
the browser.

The actions the agent can take come from the following categories: {action_str}

To be successful, it is very important to follow the following rules:
1. Explictly think about the various features on the website and how the interaction with
the website changed these features
2. Provide the description of changes in one or two sentences.
3. Strictly follow the format "State change: <your-answer>" for your output

Listing 4: Prompt for the Trajectory Labeling function LfLM

Given a task from a user, an autonomous intelligent agent carries out a sequence of actions
on a web-interface.

The actions the agent can take fall under the following categories: {action_str}

Your objective is to guess the instruction the user gave, given the following information:
Trajectory: This is a sequence of natural language descriptions of the agent’s interaction
with the web-browser.

To be successful, it is very important to follow the following rules:
1. Explictly think about how the trajectory is a valid way to achieve the instruction,
before outputing the instruction.
2. Start by thinking by outputing Thought: <your-reasoning>.
3. End your answer by strictly following the format "Instruction: <your-answer>" for your
output.

Listing 5: Prompt for the reward function sLM

An autonomous intelligent agent navigating a web browser is given an instruction by a user.
Your objective is to give a score to the agent based on how well it completed its task.

Your score must be on the scale of 1 to 5. Give a score of 5 only when there are no errors.
To do this task you are provided with the following information:

Instruction: This is the natural language instruction given to the agent.
Trajectory: This is a sequence of natural language descriptions of the agent’s interaction
with the web-browser.

To be successful, it is very important to follow the following rules:
1. Explictly think about what is needed to follow the instruction correctly on the website
and if the trajectory reflects these steps.
2 Give a score of 4 if there are very minor errors, or if the task was more than 70%
completed. Give a score of 3 (or below) if the model made very little progress towards the
given instruction or if there are major errors.
3. Start by thinking by outputing Thought: <your-reasoning>.
4. End your answer by strictly following the format "Reward: <your-answer>" for your output

Listing 6: Prompt for the base LLM agent πLM

You are an autonomous intelligent agent tasked with performing tasks on a web interface.
These tasks will be accomplished through the use of specific actions you can issue.

Here’s the information you’ll have:
DOM Representation: This is the current webpage’s Document Object Model (DOM)
representation as a string.
The user’s objective: This is the task you’re trying to complete.
The previous action: This is the action you just performed. It may be helpful to track your
progress.

You can perform the following actions: {action_str}

To be successful, it is very important to follow the following rules:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

1. You should only issue an action that is valid given the current observation
2. You should only issue one action at a time.
3. You should follow the examples to reason step by step and then issue the next action.
4. Make sure to wrap your action in a code block using triple backticks.
5. The DOM / Accessibility Tree only shows the visible part of the webpage. If you need to
interact with elements that are not visible, you can scroll to them using the scroll action
. Often submit buttons are not visible and are at the bottom of the page. To scroll to the
bottom of the page, use the scroll action with a large value for the y coordinate.
6. Issue stop action when you think you have achieved the objective. Don’t generate
anything after stop.

Listing 7: Prompt for adding reasoning steps retroactively to filtered trajectories
You are an autonomous intelligent agent that carries out a sequence of actions on a web-
interface, given an instruction from a user. The actions you can take fall under the
following categories: {action_str}

You are given the user instruction, an intermediate state of the web-page (in the form of a
DOM string), and the action you took for that intermediate state. Your objective is to

output your reasoning for choosing that specific action. In summary, you are given the
following
Instruction: This is the instruction given by the user.
Intermediate State: This is the state of the web-page at some time-step t.
Action: This is the action taken by the agent at time-step t.

Here are some example reasoning outputs for some random tasks:

Instruction: select_option(’checkbox_group’, [’appetizing’, ’bunnies’, ’weird’, ’dull’])
Intermediate State: {state}
Action: click(’21’)

Output: Let’s think step by step. The user instruction is to select multiple options from a
checkbox group, specifically ’appetizing’, ’bunnies’, ’weird’, and ’dull’. In the current

intermediate state, I can see the checkboxes for these options, and they are represented by
input elements with specific bid attributes. The action I took was to click on the

checkbox corresponding to ’appetizing’, which is represented by the input with bid ’18’.
Now I will check the ’bunnies’ checkbox, moving closer to fulfilling the user’s request to
select the specified options. In summary, the next action I will perform is ‘‘‘click(’21’)
‘‘‘

Instruction: click(’Macie’)
Intermediate State: {state}
Action: click(’21’)

Output: Let’s think step by step. The user instruction is to click on ’Macie’, which is
represented by the HTML element with bid ’21’. In the intermediate state of the web page, ’
Macie’ is identified as a folder that is expandable and clickable. By executing the click
action on this element, I will open the folder associated with ’Macie’, which aligns with
the user’s intention to interact with it. In summary, the next action I will perform is ‘‘‘
click(’21’)‘‘‘

To be successful, it is very important to follow the following rules:
1. Explictly think about how executing the given action will change the web-page in a way
that gets the agent closer to achieving the user instruction
2. You should strictly follow the format "Output: Let’s think step by step. <agent
reasoning>. In summary, the next action I will perform is ‘‘‘[action]‘‘‘ ". Here make sure
to replace [action] with the provided action.

A.2 WEBARENA

Next, we present all prompts for WebArena. The action space for WebArena is:

Listing 8: Action Space
Page Operation Actions:
‘click [id]‘: This action clicks on an element with a specific id on the webpage.
‘type [id] [content] [press_enter_after=0|1]‘: Use this to type the content into the field
with id. By default, the "Enter" key is pressed after typing unless press_enter_after is
set to 0.
‘hover [id]‘: Hover over an element with id.
‘press [key_comb]‘: Simulates the pressing of a key combination on the keyboard (e.g.,
Ctrl+v).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

‘scroll [direction=down|up]‘: Scroll the page up or down.

Tab Management Actions:
‘new_tab‘: Open a new, empty browser tab.
‘tab_focus [tab_index]‘: Switch the browser’s focus to a specific tab using its index.
‘close_tab‘: Close the currently active tab.

URL Navigation Actions:
‘goto [url]‘: Navigate to a specific URL.
‘go_back‘: Navigate to the previously viewed page.
‘go_forward‘: Navigate to the next page (if a previous ’go_back’ action was performed).

Completion Action:
‘stop ["done"]‘: Issue this action when you are done.

Homepage:
If you want to visit other websites, check out the homepage at http://homepage.com. It has
a list of websites you can visit.

This is then directly used for various prompts as {action_str}.

Listing 9: Prompt for the Exploration Policy πexplore

You are an autonomous intelligent agent tasked with navigating a web browser. Your
objective is to simulate a task that a person might perform, by interacting with the
browser through the use of specific actions.

Here’s the information you’ll have:

The current web page’s accessibility tree: This is a simplified representation of the
webpage, providing key information.
The current web page’s URL: This is the page you’re currently navigating.
The open tabs: These are the tabs you have open.
The previous action: This is the action you just performed. It may be helpful to track your
progress.

Trajectory: This is a sequence of natural language descriptions of the agent’s interaction
with the web-browser.
Person Description: The description of a specific kind of person whose task you are
supposed to simulate.

The actions you can perform fall into several categories: {action_str}

To be successful, it is very important to follow the following rules:
1. You should only issue an action that is valid given the current observation
2. You should only issue one action at a time.
3. You should follow the examples to reason step by step and then issue the next action.
4. Generate the action in the correct format. Start by reasoning out the current situation.
End with "In summary, the next action I will perform is" phrase, followed by action inside
‘‘‘‘‘‘. For example, "Let’s think step-by-step. Given the current state, I need to click

on the like button which has id 1234. In summary, the next action I will perform is ‘‘‘
click [1234]‘‘‘".
5. To generate an interesting task, make sure you issue atleast 4 actions before stopping.
More interesting tasks typically involve more interactions with the browser.
6. You can issue atmost 40 actions before stopping, but feel free to output the stop action
early if you want to stop exploring. Don’t generate anything after stop.

Here are some example outputs for some random tasks:
1. Let’s think step-by-step. This page list the information of HP Inkjet Fax Machine, which
is the product identified in the objective. Its price is $279.49. I think I have achieved

the objective. I will issue the stop action with the answer. In summary, the next action I
will perform is ‘‘‘stop [$279.49]‘‘‘
2. Let’s think step-by-step. This page has a search box whose ID is [164]. According to the
nominatim rule of openstreetmap, I can search for the restaurants near a location by "

restaurants near". I can submit my typing by pressing the Enter afterwards. In summary, the
next action I will perform is ‘‘‘type [164] [restaurants near CMU] [1]‘‘

Listing 10: Prompt for ∆LM

You are given the output of an action taken by an autonomous intelligent agent navigating a
web browser. Your objective is to produce a description of the changes made to the state

of the browser.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Here’s the information you’ll have:

Initial state of the browser as an accessibility tree: This is a simplified representation
of the webpage, providing key information.
Final state of the browser: This is the accessibility tree representation after the agent
took the action

The action taken by the web agent: The agent can take actions that fall under the following
categories: {action_str}

To be successful, it is very important to follow the following rules:
1. Explictly think about the various features on the website and how the interaction with
the website changed these features
2. Provide the description of changes in one or two sentences.
3. Strictly follow the format "State change: <your-answer>" for your output

Listing 11: Prompt for the Trajectory Labeling function LfLM

Given an instruction from a user, an autonomous intelligent agent carries out a sequence of
actions on a web-browser. The actions the agent can take fall under the following

categories: {action_str}

Your objective is to guess the instruction the user gave, given the following information:
Trajectory: This is a sequence of natural language descriptions of the agent’s interaction
with the web-browser.

Here are some examples of user instructions:
1. Get the distance from SF airport to Palo Alto.
2. Find out the price of Apple airpods
3. Add 5 items to cart
4. Make a comment on the first post in the r/gaming subreddit.

To be successful, it is very important to follow the following rules:
1. Explictly think about how the trajectory is a valid way to achieve the instruction,
before outputing the instruction.
2. Start by thinking by outputing Thought: <your-reasoning>.
3. End your answer by strictly following the format "Instruction: <your-answer>" for your
output.

Listing 12: Prompt for the reward function sLM

An autonomous intelligent agent navigating a web browser is given an instruction by a user.
Your objective is to give a score to the agent based on how well it completed its task.

Your score must be on the scale of 1 to 5. Give a score of 5 only when there are no errors.
To do this task you are provided with the following information:

Instruction: This is the natural language instruction given to the agent.
Trajectory: This is a sequence of natural language descriptions of the agent’s interaction
with the web-browser.

To be successful, it is very important to follow the following rules:
1. Explictly think about what is needed to follow the instruction correctly on the website
and if the trajectory reflects these steps.
2 Give a score of 4 if there are minor errors, or if the task was more than 70% completed.
Give a score of 3 (or below) if the model made very little progress towards the given
instruction.
3. Start by thinking by outputing Thought: <your-reasoning>.
4. End your answer by strictly following the format "Reward: <your-answer>" for your output

Listing 13: Prompt for the base LLM agent πLM

You are an autonomous intelligent agent tasked with navigating a web browser. You will be
given web-based tasks. These tasks will be accomplished through the use of specific actions
you can issue.

Here’s the information you’ll have:
The user’s objective: This is the task you’re trying to complete.
The current web page’s accessibility tree: This is a simplified representation of the
webpage, providing key information.
The current web page’s URL: This is the page you’re currently navigating.
The open tabs: These are the tabs you have open.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

The previous actions: These are all the action you have performed. It may be helpful to
track your progress.

The actions you can perform fall into several categories: {action_str}

To be successful, it is very important to follow the following rules:
1. You should only issue an action that is valid given the current observation
2. You should only issue one action at a time.
3. You should follow the examples to reason step by step and then issue the next action.
4. You are strictly forbidden from issuing a goto action to a URL that is not on the
homepage.
5. Generate the action in the correct format. Start by reasoning about the current
situation. End with "In summary, the next action I will perform is" phrase, followed by
action inside ‘‘‘‘‘‘. For example, "Let’s think step-by-step. Given the current state, I
need to click on the like button which has id 1234. In summary, the next action I will
perform is ‘‘‘click [1234]‘‘‘".
6. Issue stop action when you think you have achieved the objective. Don’t generate
anything after stop.

Here are some example outputs for some random tasks:
1. Let’s think step-by-step. This page list the information of HP Inkjet Fax Machine, which
is the product identified in the objective. Its price is $279.49. I think I have achieved

the objective. I will issue the stop action with the answer. In summary, the next action I
will perform is ‘‘‘stop [$279.49]‘‘‘
2. Let’s think step-by-step. This page has a search box whose ID is [164]. According to the
nominatim rule of openstreetmap, I can search for the restaurants near a location by "

restaurants near". I can submit my typing by pressing the Enter afterwards. In summary, the
next action I will perform is ‘‘‘type [164] [restaurants near CMU] [1]‘‘‘

Listing 14: Prompt for adding reasoning steps retroactively to filtered trajectories
You are an autonomous intelligent agent that carries out a sequence of actions on a web-
interface, given an instruction from a user.

The actions you can take fall under the following categories: {action_str}

You are given the user instruction, an intermediate state of the web-page (in the form of
an accessibility tree), and the action you took for that intermediate state. Your objective
is to output your reasoning for choosing that specific action. In summary, you are given

the following
Instruction: This is the instruction given by the user.
Intermediate State: This is the state of the web-page at some time-step t.
Action: This is the action taken by the agent at time-step t.

Here are some example reasoning outputs for some random tasks

Instruction: Find directions from CMU to Downtown Pittsburgh
Intermediate State: {state}
Action: click [482]

Output: Let’s think step-by-step. Since my previous attempt to click the ’Go’ button failed
, I will try clicking the ’Find directions between two points’ link instead. This could
help in planning public transportation routes effectively. In summary, the next action I
will perform is ‘‘‘click [482]‘‘‘

Instruction: Navigate to the ’Orders’ section and create a new customer for order
processing.
Intermediate State: {state}
Action: click [1583]

Output: Let’s think step-by-step. Currently, I am in the Orders section of the Magento
Admin panel. I see a button labeled ’Create New Order,’ which is likely the next step for
creating orders. In summary, the next action I will perform is ‘‘‘click [1583]‘‘‘ to create
a new order.

To be successful, it is very important to follow the following rules:
1. Explictly think about how executing the given action will change the web-page in a way
that gets the agent closer to achieving the user instruction
2. Make sure to wrap the action inside triple backticks (such as ‘‘‘click [1234]‘‘‘, ‘‘‘
type [12] [Hotels near CMU]‘‘‘) as shown in the examples and strictly follow the format "
Output: Let’s think step by step. <agent reasoning>. In summary, the next action I will
perform is ‘‘‘[action]‘‘‘ ". Here make sure to replace [action] with the provided action.

Listing 15: Prompt for appending the special [stop] action in WebArena

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Given an instruction from a user, an autonomous intelligent agent carries out a sequence of
actions on a web-browser. The actions the agent can take fall under the following

categories (we also provide the descriptions of each action): {action_str}

You are given the user instruction, and the final webpage after the agent finished its task
. Unfortunately, we forgot to collect the final stop action from the agent. Your objective
is to guess the agent’s stop action. To do this, you are given the following
Instruction: This is the instruction given by the user.
Final State: This is the final state of the web-page after the agent executed its actions
on the browser.

Here are some examples of valid outputs:
1. Let’s think step-by-step. The task requires me to find the person with the most number
of upvotes. I see the answer to that is Alice Oh. Therefore I will stop now. In summary, my
next action will be ‘‘‘stop [Alice Oh]‘‘‘.

2. Let’s think step-by-step. The task required setting the price of Sprite to 25$ which I
have already done. Thus I will stop now. In summary, my next action will be ‘‘‘stop [N/A
]‘‘‘.
3. Let’s think step-by-step. I was supposed to find the distance from Brad’s house to the
coffee shop. I see this info on the map as 0.3 miles. Thus I will issue the stop action. In
summary, my next action will be ‘‘‘stop [0.3 miles]‘‘‘

To be successful, it is very important to follow the following rules:
1. Explictly think about what kind of a stop action was needed. For instance, if the user
requests information (e.g. Search for airports near CMU or Find developers with more than 5
merge requests), then the stop action should have the answer based on the final web-page (

e.g. ‘‘‘stop [Pittsburgh Airport]‘‘‘ or ‘‘‘stop [Don Knuth, Alan Turing]‘‘‘). Otherwise,
the stop action should be without any arguments (e.g. ‘‘‘stop‘‘‘).
2. Your output should include reasoning steps. Also make sure to wrap the stop action in
triple backticks for e.g. ‘‘‘stop [<your answer>]‘‘‘. Overall, follow the following format
for your output: "Let’s think step by step. <your reasoning>. In summary, my next action
should be ‘‘‘stop [<your answer>]‘‘‘.

B MODEL-BASED EVALUATION: DETAILS

For each (g, τ) pair we first use ∆LM to compute the sequence of changes δτ , which is then passed
into the reward module along with g. We implement the reward module as a prompted LM, using the
largest GPT-4o (specifically gpt-4o-2024-08-06) with the following prompt:

Listing 16: Prompt for the model-based evaluator
An autonomous intelligent agent navigating a web browser is given an instruction by a user.
Your objective is to give a score to the agent based on how well it completed its task.

Your score must be on the scale of 1 to 5. Give a score of 5 only when there are no errors.
To do this task you are provided with the following information:

Instruction: Natural language instruction given to the agent.
Trajectory: Sequence of language descriptions of the agent’s interaction with the browser.

Here are some guidelines for scoring:
1. Give a score of 5 if there are no errors.
2. Give a score of 4 if the task was almost correctly done (i.e. for form filling, most of
the fields are filled or for a search task, a query was correctly typed, and the agent
navigated to the right links).
3. Give a score of 3 if the task was only partially completed (i.e for form filling, less
than half the fields are filled out) and if there are other minor execution errors.
4. Give a score of 1 or 2 if there are major execution errors, or the task was hardly
completed, or if the agent did something completely unrelated.

To be successful, it is very important to follow the following rules:
1. Explictly think about what is needed to follow the instruction correctly on the website
and if the trajectory reflects these steps.
2. Start by thinking by outputing Thought: <your-reasoning>.
3. End your answer by strictly following the format "Reward: <your-answer>" for your output

C PROCESSING DEMONSTRATIONS FOR SFT

As mentioned in §2, for supervised finetuning each demonstration is converted into multiple training
instances. We perform this conversion differently based on input features of πLM.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Dataset NNetnav NNetnav (self-train) Instruction-First

MiniWoB++ 2288 - 8559
WebArena 9737 2204 1681

Table 6: Number of instances for supervised training experiments of §5 under various settings.
Between NNetnav and Instruction-First, we only control for the number of episodes for a fair
comparison, which results in different number of training instances.

MiniWoB++. For MiniWoB++, πLM conditions on the current observation ot, the goal g and the
previous action at−1 (see prompt in §A.1). Thus, we pre-process each (g, τ) demonstration into
inputs (g, ot, at−1) with the corresponding reasoning step and action (rt, at) as the target output.

WebArena. For WebArena, πLM conditions on the current observation ot, the goal g and all previous
actions {a1, a2, . . . , at−1} (see prompt in §A.2). Thus, we pre-process each (g, τ) demonstration
into inputs (g, ot, {a<t}) with (rt, at) as the target output.

We report number of training instances from NNetnav and instruction-first generation for both
environments in Table 6.

D TRAINING DETAILS

Additional Hyperparameters. For all Llama-3-8B-Instruct finetuning experiments, we set the
batch size for training as 128 × 4096, train for 5 epochs, with a learning rate of 2e-5 that linearly
warms up from 0 over 3% of total training steps. We use 4 A100 GPUs with 80GB GPU memory,
and additionally use DeepSpeed ZeRO-3 (Rajbhandari et al., 2020) to speed up training and manage
memory.

E NNetnav-6K EXAMPLES

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Shopping

Find a kitchen utensil organizer.
Find a kitchen utensil organizer within a certain budget.
Write a review for the product “Citric Acid 2 Pounds 100% Pure Organic Food Grade”.
Find the price of kitchen gadgets that can be used for dining and entertaining, and add them to the cart.
Browse for women’s clothing items, specifically jumpsuits, and add some to cart.

CMS

Change the stock status of the Sprite Stasis Ball 65 cm to In Stock.
Create a new product in the Magento Admin panel with the name ’New Fashionable Watch’, SKU ’New
Fashionable WatchFW101’, price $100.00, and set as new from 2024-01-01.
Update the price of Sprite Stasis Ball 55 cm to $24.50 and set its quantity to 50.
Add two products, “Abominable Hoodie” and “Samsung Smart TV”, with respective prices $99.99 and
$50.00, and then start the process of adding a new customer.

Reddit

Create a new forum called “Funny Stuff” with the title “Memes and LOLs”, description “A place for sharing
and discussing funny memes and LOLs”, and sidebar “Memes of the day”.
Find a webpage related to intraday trading strategies on the wallstreetbets forum.
Find and participate in a discussion on the wallstreetbets forum about intraday trading strategy, specifically
on a post titled “Swings and roundabouts”.
Change my profile settings to use Deutsch as the language and Africa/Accra as the time zone, and then view
the search results for “r/art”.

Maps

Get walking directions from Logan Street, Pittsburgh, PA to Carnegie Mellon University on OpenStreetMap.
Get the cycling directions from Brooklyn to Manhattan.
Find the driving directions from TLC Medical Transportation Services in Syracuse to Times Square in
Manhattan.

Gitlab

Create a new project named ’My Blog Post Project’ and add an Apache License 2.0 file.
Create a new project, add a LICENSE file with Apache License 2.0, and approve the “Add verification
functions” merge request.
Search for a README.md file within the “My New Project” project and verify its contents.
Edit the issue “Link to WCAG 2.1 instead of 2.0?” in the First Contributions project on GitLab by updating
its title and description to point to WCAG 2.1 guidelines instead of 2.0 guidelines.
Investigate the node-http-proxy project’s issue #992 regarding connection headers and determine its relevance
to the Byte Blaze project.
Investigate and comment on the “Outdated dependencies” issue in the “Byte BlazeByte BlazeByte Blaze /
accessible-html-content-patterns” project.

Table 7: Some Example demonstrations obtained from NNetnav-6k. We note that these instructions
are hierarchical, refer to concrete features and entities and plausible by design.

22

	Introduction
	Background
	Our Approach
	LM Components
	Sampling Demonstrations via Interactions
	Generating Post-hoc Reasoning steps

	Experimental Setup
	Datasets
	Model Settings
	Implementation Details

	Main Results
	NNetnav-6k
	Related Work
	Conclusion
	Prompts for LM components
	MiniWoB++
	WebArena

	Model-based evaluation: Details
	Processing Demonstrations for SFT
	Training Details
	NNetnav-6k Examples

